ML-DS: A Novel Deterministic Sampling Algorithm for Association Rules Mining
نویسندگان
چکیده
Due to the explosive growth of data in every aspect of our life, data mining algorithms often suffer from scalability issues. One effective way to tackle this problem is to employ sampling techniques. This paper introduces, ML-DS, a novel deterministic sampling algorithm for mining association rules in large datasets. Unlike most algorithms in the literature that use randomness in sampling, our algorithm is fully deterministic. The process of sampling proceeds in stages. The size of the sample data in any stage is half that of the previous stage. In any given stage, the data is partitioned into disjoint groups of equal size. Some distance measure is used to determine the importance of each group in identifying accurate association rules. The groups are then sorted based on this measure. Only the best 50% of the groups move to the next stage. We perform as many stages of sampling as needed to produce a sample of a desired target size. The resultant sample is then employed to identify association rules. Empirical results show that our approach outperforms simple randomized sampling in accuracy and is competitive in comparison with the state-of-the-art sampling algorithms in terms of both time and accuracy.
منابع مشابه
Using a Data Mining Tool and FP-Growth Algorithm Application for Extraction of the Rules in two Different Dataset (TECHNICAL NOTE)
In this paper, we want to improve association rules in order to be used in recommenders. Recommender systems present a method to create the personalized offers. One of the most important types of recommender systems is the collaborative filtering that deals with data mining in user information and offering them the appropriate item. Among the data mining methods, finding frequent item sets and ...
متن کاملIntroducing an algorithm for use to hide sensitive association rules through perturb technique
Due to the rapid growth of data mining technology, obtaining private data on users through this technology becomes easier. Association Rules Mining is one of the data mining techniques to extract useful patterns in the form of association rules. One of the main problems in applying this technique on databases is the disclosure of sensitive data by endangering security and privacy. Hiding the as...
متن کاملA new approach based on data envelopment analysis with double frontiers for ranking the discovered rules from data mining
Data envelopment analysis (DEA) is a relatively new data oriented approach to evaluate performance of a set of peer entities called decision-making units (DMUs) that convert multiple inputs into multiple outputs. Within a relative limited period, DEA has been converted into a strong quantitative and analytical tool to measure and evaluate performance. In an article written by Toloo et al. (2009...
متن کاملApplying a decision support system for accident analysis by using data mining approach: A case study on one of the Iranian manufactures
Uncertain and stochastic states have been always taken into consideration in the fields of risk management and accident, like other fields of industrial engineering, and have made decision making difficult and complicated for managers in corrective action selection and control measure approach. In this research, huge data sets of the accidents of a manufacturing and industrial unit have been st...
متن کاملA Novel Progressive Sampling based Approach for Effective Mining of Association Rules
ABSRACT Mining Association Rules from huge databases is one of the important issue that need to be addressed. This paper presents a new sampling based association rule mining algorithm that uses a progressive sampling approach based on negative border and Frequent pattern growth (FP Growth) algorithm for finding the candidate item sets which ultimately shortens the execution time in generating ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012